Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantitative proteome profile of water deficit stress responses in eastern cottonwood (Populus deltoides) leaves.

Identifieur interne : 000D08 ( Main/Exploration ); précédent : 000D07; suivant : 000D09

Quantitative proteome profile of water deficit stress responses in eastern cottonwood (Populus deltoides) leaves.

Auteurs : Paul E. Abraham [États-Unis] ; Benjamin J. Garcia [États-Unis] ; Lee E. Gunter [États-Unis] ; Sara S. Jawdy [États-Unis] ; Nancy Engle [États-Unis] ; Xiaohan Yang [États-Unis] ; Daniel A. Jacobson [États-Unis] ; Robert L. Hettich [États-Unis] ; Gerald A. Tuskan [États-Unis] ; Timothy J. Tschaplinski [États-Unis]

Source :

RBID : pubmed:29447168

Descripteurs français

English descriptors

Abstract

Drought stress is a recurring feature of world climate and the single most important factor influencing agricultural yield worldwide. Plants display highly variable, species-specific responses to drought and these responses are multifaceted, requiring physiological and morphological changes influenced by genetic and molecular mechanisms. Moreover, the reproducibility of water deficit studies is very cumbersome, which significantly impedes research on drought tolerance, because how a plant responds is highly influenced by the timing, duration, and intensity of the water deficit. Despite progress in the identification of drought-related mechanisms in many plants, the molecular basis of drought resistance remains to be fully understood in trees, particularly in poplar species because their wide geographic distribution results in varying tolerances to drought. Herein, we aimed to better understand this complex phenomenon in eastern cottonwood (Populus deltoides) by performing a detailed contrast of the proteome changes between two different water deficit experiments to identify functional intersections and divergences in proteome responses. We investigated plants subjected to cyclic water deficit and compared these responses to plants subjected to prolonged acute water deficit. In total, we identified 108,012 peptide sequences across both experiments that provided insight into the quantitative state of 22,737 Populus gene models and 8,199 functional protein groups in response to drought. Together, these datasets provide the most comprehensive insight into proteome drought responses in poplar to date and a direct proteome comparison between short period dehydration shock and cyclic, post-drought re-watering. Overall, this investigation provides novel insights into drought avoidance mechanisms that are distinct from progressive drought stress. Additionally, we identified proteins that have been associated as drought-relevant in previous studies. Importantly, we highlight the RD26 transcription factor as a gene regulated at both the transcript and protein level, regardless of species and drought condition, and, thus, represents a key, universal drought marker for Populus species.

DOI: 10.1371/journal.pone.0190019
PubMed: 29447168
PubMed Central: PMC5813909


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Quantitative proteome profile of water deficit stress responses in eastern cottonwood (Populus deltoides) leaves.</title>
<author>
<name sortKey="Abraham, Paul E" sort="Abraham, Paul E" uniqKey="Abraham P" first="Paul E" last="Abraham">Paul E. Abraham</name>
<affiliation wicri:level="2">
<nlm:affiliation>Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Garcia, Benjamin J" sort="Garcia, Benjamin J" uniqKey="Garcia B" first="Benjamin J" last="Garcia">Benjamin J. Garcia</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gunter, Lee E" sort="Gunter, Lee E" uniqKey="Gunter L" first="Lee E" last="Gunter">Lee E. Gunter</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jawdy, Sara S" sort="Jawdy, Sara S" uniqKey="Jawdy S" first="Sara S" last="Jawdy">Sara S. Jawdy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Engle, Nancy" sort="Engle, Nancy" uniqKey="Engle N" first="Nancy" last="Engle">Nancy Engle</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Xiaohan" sort="Yang, Xiaohan" uniqKey="Yang X" first="Xiaohan" last="Yang">Xiaohan Yang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jacobson, Daniel A" sort="Jacobson, Daniel A" uniqKey="Jacobson D" first="Daniel A" last="Jacobson">Daniel A. Jacobson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hettich, Robert L" sort="Hettich, Robert L" uniqKey="Hettich R" first="Robert L" last="Hettich">Robert L. Hettich</name>
<affiliation wicri:level="2">
<nlm:affiliation>Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tuskan, Gerald A" sort="Tuskan, Gerald A" uniqKey="Tuskan G" first="Gerald A" last="Tuskan">Gerald A. Tuskan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tschaplinski, Timothy J" sort="Tschaplinski, Timothy J" uniqKey="Tschaplinski T" first="Timothy J" last="Tschaplinski">Timothy J. Tschaplinski</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29447168</idno>
<idno type="pmid">29447168</idno>
<idno type="doi">10.1371/journal.pone.0190019</idno>
<idno type="pmc">PMC5813909</idno>
<idno type="wicri:Area/Main/Corpus">000F62</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F62</idno>
<idno type="wicri:Area/Main/Curation">000F62</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000F62</idno>
<idno type="wicri:Area/Main/Exploration">000F62</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Quantitative proteome profile of water deficit stress responses in eastern cottonwood (Populus deltoides) leaves.</title>
<author>
<name sortKey="Abraham, Paul E" sort="Abraham, Paul E" uniqKey="Abraham P" first="Paul E" last="Abraham">Paul E. Abraham</name>
<affiliation wicri:level="2">
<nlm:affiliation>Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Garcia, Benjamin J" sort="Garcia, Benjamin J" uniqKey="Garcia B" first="Benjamin J" last="Garcia">Benjamin J. Garcia</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gunter, Lee E" sort="Gunter, Lee E" uniqKey="Gunter L" first="Lee E" last="Gunter">Lee E. Gunter</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jawdy, Sara S" sort="Jawdy, Sara S" uniqKey="Jawdy S" first="Sara S" last="Jawdy">Sara S. Jawdy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Engle, Nancy" sort="Engle, Nancy" uniqKey="Engle N" first="Nancy" last="Engle">Nancy Engle</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Xiaohan" sort="Yang, Xiaohan" uniqKey="Yang X" first="Xiaohan" last="Yang">Xiaohan Yang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jacobson, Daniel A" sort="Jacobson, Daniel A" uniqKey="Jacobson D" first="Daniel A" last="Jacobson">Daniel A. Jacobson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hettich, Robert L" sort="Hettich, Robert L" uniqKey="Hettich R" first="Robert L" last="Hettich">Robert L. Hettich</name>
<affiliation wicri:level="2">
<nlm:affiliation>Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tuskan, Gerald A" sort="Tuskan, Gerald A" uniqKey="Tuskan G" first="Gerald A" last="Tuskan">Gerald A. Tuskan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tschaplinski, Timothy J" sort="Tschaplinski, Timothy J" uniqKey="Tschaplinski T" first="Timothy J" last="Tschaplinski">Timothy J. Tschaplinski</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chromatography, Liquid (MeSH)</term>
<term>Droughts (MeSH)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (metabolism)</term>
<term>Proteome (MeSH)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Tandem Mass Spectrometry (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chromatographie en phase liquide (MeSH)</term>
<term>Populus (métabolisme)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Protéome (MeSH)</term>
<term>Spectrométrie de masse en tandem (MeSH)</term>
<term>Stress physiologique (MeSH)</term>
<term>Sécheresses (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromatography, Liquid</term>
<term>Droughts</term>
<term>Proteome</term>
<term>Stress, Physiological</term>
<term>Tandem Mass Spectrometry</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Chromatographie en phase liquide</term>
<term>Protéome</term>
<term>Spectrométrie de masse en tandem</term>
<term>Stress physiologique</term>
<term>Sécheresses</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Drought stress is a recurring feature of world climate and the single most important factor influencing agricultural yield worldwide. Plants display highly variable, species-specific responses to drought and these responses are multifaceted, requiring physiological and morphological changes influenced by genetic and molecular mechanisms. Moreover, the reproducibility of water deficit studies is very cumbersome, which significantly impedes research on drought tolerance, because how a plant responds is highly influenced by the timing, duration, and intensity of the water deficit. Despite progress in the identification of drought-related mechanisms in many plants, the molecular basis of drought resistance remains to be fully understood in trees, particularly in poplar species because their wide geographic distribution results in varying tolerances to drought. Herein, we aimed to better understand this complex phenomenon in eastern cottonwood (Populus deltoides) by performing a detailed contrast of the proteome changes between two different water deficit experiments to identify functional intersections and divergences in proteome responses. We investigated plants subjected to cyclic water deficit and compared these responses to plants subjected to prolonged acute water deficit. In total, we identified 108,012 peptide sequences across both experiments that provided insight into the quantitative state of 22,737 Populus gene models and 8,199 functional protein groups in response to drought. Together, these datasets provide the most comprehensive insight into proteome drought responses in poplar to date and a direct proteome comparison between short period dehydration shock and cyclic, post-drought re-watering. Overall, this investigation provides novel insights into drought avoidance mechanisms that are distinct from progressive drought stress. Additionally, we identified proteins that have been associated as drought-relevant in previous studies. Importantly, we highlight the RD26 transcription factor as a gene regulated at both the transcript and protein level, regardless of species and drought condition, and, thus, represents a key, universal drought marker for Populus species.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29447168</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>03</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Quantitative proteome profile of water deficit stress responses in eastern cottonwood (Populus deltoides) leaves.</ArticleTitle>
<Pagination>
<MedlinePgn>e0190019</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0190019</ELocationID>
<Abstract>
<AbstractText>Drought stress is a recurring feature of world climate and the single most important factor influencing agricultural yield worldwide. Plants display highly variable, species-specific responses to drought and these responses are multifaceted, requiring physiological and morphological changes influenced by genetic and molecular mechanisms. Moreover, the reproducibility of water deficit studies is very cumbersome, which significantly impedes research on drought tolerance, because how a plant responds is highly influenced by the timing, duration, and intensity of the water deficit. Despite progress in the identification of drought-related mechanisms in many plants, the molecular basis of drought resistance remains to be fully understood in trees, particularly in poplar species because their wide geographic distribution results in varying tolerances to drought. Herein, we aimed to better understand this complex phenomenon in eastern cottonwood (Populus deltoides) by performing a detailed contrast of the proteome changes between two different water deficit experiments to identify functional intersections and divergences in proteome responses. We investigated plants subjected to cyclic water deficit and compared these responses to plants subjected to prolonged acute water deficit. In total, we identified 108,012 peptide sequences across both experiments that provided insight into the quantitative state of 22,737 Populus gene models and 8,199 functional protein groups in response to drought. Together, these datasets provide the most comprehensive insight into proteome drought responses in poplar to date and a direct proteome comparison between short period dehydration shock and cyclic, post-drought re-watering. Overall, this investigation provides novel insights into drought avoidance mechanisms that are distinct from progressive drought stress. Additionally, we identified proteins that have been associated as drought-relevant in previous studies. Importantly, we highlight the RD26 transcription factor as a gene regulated at both the transcript and protein level, regardless of species and drought condition, and, thus, represents a key, universal drought marker for Populus species.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Abraham</LastName>
<ForeName>Paul E</ForeName>
<Initials>PE</Initials>
<Identifier Source="ORCID">0000-0003-2685-9123</Identifier>
<AffiliationInfo>
<Affiliation>Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Garcia</LastName>
<ForeName>Benjamin J</ForeName>
<Initials>BJ</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gunter</LastName>
<ForeName>Lee E</ForeName>
<Initials>LE</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jawdy</LastName>
<ForeName>Sara S</ForeName>
<Initials>SS</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Engle</LastName>
<ForeName>Nancy</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Xiaohan</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jacobson</LastName>
<ForeName>Daniel A</ForeName>
<Initials>DA</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hettich</LastName>
<ForeName>Robert L</ForeName>
<Initials>RL</Initials>
<AffiliationInfo>
<Affiliation>Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tuskan</LastName>
<ForeName>Gerald A</ForeName>
<Initials>GA</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tschaplinski</LastName>
<ForeName>Timothy J</ForeName>
<Initials>TJ</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>02</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002853" MajorTopicYN="N">Chromatography, Liquid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="Y">Proteome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="Y">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053719" MajorTopicYN="N">Tandem Mass Spectrometry</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>10</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>12</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>2</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>2</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29447168</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0190019</ArticleId>
<ArticleId IdType="pii">PONE-D-17-35559</ArticleId>
<ArticleId IdType="pmc">PMC5813909</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Proteome Res. 2012 Jan 1;11(1):449-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22003893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(6):e38017</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22719860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2010 Jun;5(6):649-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20404516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Jun 13;14:164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24928551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1998 Oct;18(10):645-652</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Sep 13;7:1341</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27679640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2013 May;13(10-11):1737-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23613368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2003 Jan;54(382):467-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12508057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Apr 25;7:519</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27200005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1999 Jan;39(1):117-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10080714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2013 Jan;12(1):106-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23073815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Feb;155(2):988-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21163961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1998 Oct;18(10):653-658</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2017 May 17;68(11):2991-3005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28586434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>C R Biol. 2008 Mar;331(3):215-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18280987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1982 Oct 29;218(4571):443-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17808529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2007 Feb;6(2):654-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17269722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Aug;23(8):2939-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21810996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2016 Feb;28(2):345-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26842464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2014 Nov;84:158-168</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25285889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Mar 4;286(9):6999-7009</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21169366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2013 Aug;10(8):730-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23921808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Jul;174(3):1913-1930</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28522456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Apr 15;25(8):1091-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19237447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2011 Aug 12;74(8):1396-410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21439416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2009 May;70(8):988-1002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19560791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2008 Mar;49(3):481-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18202002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2013 Dec 30;13:229</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24377444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2009 Aug;8(8):3872-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19522537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Jul 17;6:7640</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26184543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2007 Jul;7(14):2459-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17570521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Apr 21;165(3):535-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27104977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 May;174(1):435-449</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28336770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2014 Mar;32(3):223-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24727771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2016 Aug;35(8):1729-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27154758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2016 Oct 18;17 (10 ):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27763546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2016 Sep 6;9(9):1272-1285</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27373216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2017 Jun;115:183-199</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28376411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1992 Jun;10(4):411-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14969978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2006 May;26(5):595-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16452073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Mar 6;347(6226):1259038</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25745177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Aug 16;113(33):9375-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27469166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Oct 1;26(19):2460-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2016 Sep;13(9):731-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27348712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plants (Basel). 2015 Feb 16;4(1):112-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27135320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Jul 1;24(13):1556-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18453552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Aug 05;9(8):e103930</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25093810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Sep;19(9):2952-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17905899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Dec;20(12):3210-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19114538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2013 Sep 6;12(9):4111-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23879310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(7):e21800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21789182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Nov;55(407):2331-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15448178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Sep 14;10(9):e0137762</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26368942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Aug 26;6:656</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26379684</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Tennessee</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="Abraham, Paul E" sort="Abraham, Paul E" uniqKey="Abraham P" first="Paul E" last="Abraham">Paul E. Abraham</name>
</region>
<name sortKey="Engle, Nancy" sort="Engle, Nancy" uniqKey="Engle N" first="Nancy" last="Engle">Nancy Engle</name>
<name sortKey="Garcia, Benjamin J" sort="Garcia, Benjamin J" uniqKey="Garcia B" first="Benjamin J" last="Garcia">Benjamin J. Garcia</name>
<name sortKey="Gunter, Lee E" sort="Gunter, Lee E" uniqKey="Gunter L" first="Lee E" last="Gunter">Lee E. Gunter</name>
<name sortKey="Hettich, Robert L" sort="Hettich, Robert L" uniqKey="Hettich R" first="Robert L" last="Hettich">Robert L. Hettich</name>
<name sortKey="Jacobson, Daniel A" sort="Jacobson, Daniel A" uniqKey="Jacobson D" first="Daniel A" last="Jacobson">Daniel A. Jacobson</name>
<name sortKey="Jawdy, Sara S" sort="Jawdy, Sara S" uniqKey="Jawdy S" first="Sara S" last="Jawdy">Sara S. Jawdy</name>
<name sortKey="Tschaplinski, Timothy J" sort="Tschaplinski, Timothy J" uniqKey="Tschaplinski T" first="Timothy J" last="Tschaplinski">Timothy J. Tschaplinski</name>
<name sortKey="Tuskan, Gerald A" sort="Tuskan, Gerald A" uniqKey="Tuskan G" first="Gerald A" last="Tuskan">Gerald A. Tuskan</name>
<name sortKey="Yang, Xiaohan" sort="Yang, Xiaohan" uniqKey="Yang X" first="Xiaohan" last="Yang">Xiaohan Yang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D08 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000D08 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29447168
   |texte=   Quantitative proteome profile of water deficit stress responses in eastern cottonwood (Populus deltoides) leaves.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29447168" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020